Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 19(193): 20220168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000229

RESUMO

Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Aves
2.
Artigo em Inglês | MEDLINE | ID: mdl-34004319

RESUMO

To understand foraging strategies and behavioral flexibility in wild animals, it is important to evaluate the physiological costs imposed by foraging efforts and how these costs affect foraging and provisioning behavior. Oxidative stress is a possible physiological indicator associated with foraging behavior in wild seabirds, and may also affect their reproductive performance. However, no previous study has simultaneously recorded foraging behavior and the associated oxidative stress in wild seabirds. Using an integrative approach based on oxidative stress measurements and bio-logging techniques (i.e., the use of animal-borne sensors), we determined the relationships between foraging behavior and oxidative stress in chick-rearing streaked shearwaters Calonectris leucomelas in 2018 and 2019. To quantify their oxidative stress, we measured reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) in their plasma. We found that the d-ROMs levels were positively related to the maximum distance from the colony and the number of takeoffs, especially in 2019 when shearwaters flew further to forage. In 2018, when they flew relatively short distances, the BAP levels were positively related to the levels of their physical activity (overall dynamic body acceleration; ODBA). We conclude that longer and less successful foraging may lead to increase oxidative stress, while successful foraging may mitigate the oxidative stress of foraging by providing dietary antioxidants. Our results highlight that the combined data from bio-logging and oxidative stress measurements aid in evaluating the underlying physiological costs of foraging behavior in wild animals.


Assuntos
Aves/fisiologia , Comportamento Alimentar/fisiologia , Estresse Oxidativo , Ração Animal , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Comportamento Animal , Feminino , Geografia , Masculino , Oxidantes/farmacologia , Temperatura
3.
Commun Biol ; 3(1): 633, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127951

RESUMO

Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals' lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices' limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals' lives.


Assuntos
Aves , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Animais , Comportamento Animal , Sistemas de Informação Geográfica , Monitorização Fisiológica/instrumentação , Gravação em Vídeo
4.
PLoS One ; 11(11): e0167261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902754

RESUMO

Telomeres are nucleotide sequences located at the ends of chromosomes that promote genome stability. Changes in telomere length (dynamics) are related to fitness or life expectancy, and telomere dynamics during the development phase are likely to be affected by growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks (Larus crassirostris) in nests with and without siblings. We found that the initial telomere lengths of singletons at hatching were longer than those of siblings, indicating that singletons are higher-quality chicks than siblings in terms of telomere length. Other factors likely affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were not related to telomere lengths. Within broods, initial telomere lengths were longer in older chicks than in younger chicks, suggesting that maternal effects, which vary with laying sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling showed more attrition between hatching and fledging than those of singleton chicks, suggesting that being raised with siblings can cause a sustained competitive environment that leads to telomere loss. High growth rates were associated with a low degree of telomere shortening observed in older siblings, perhaps because slower growth reflects higher food stress and/or higher aerobic metabolism from increased begging effort. Our results show that developmental telomere attrition was an inevitable consequence in two-chick nests in the pre- and post-hatching microenvironments due to the combination of social stress within the nest and maternal effects. The results of our study shed light on telomere dynamics in early life, which may represent an important physiological undercurrent of life-history traits.


Assuntos
Charadriiformes/crescimento & desenvolvimento , Charadriiformes/genética , Longevidade/genética , Irmãos , Telômero/genética , Animais , Charadriiformes/fisiologia , Feminino , Masculino , Comportamento de Nidação , Oviposição
5.
Biol Lett ; 9(5): 20130511, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23945210

RESUMO

Telomeres are regarded as markers of biological or cellular ageing because they shorten with the degree of stress exposure. Accordingly, telomere lengths should show different rates of change when animals are faced with different intensities of environmental challenges. However, a relationship between telomere length and the environment has not yet been tested within a natural setting. Here, we report longitudinal telomere dynamics in free-living, black-tailed gulls (Larus crassirostris) through the recapture of birds of a known age over 2-5 consecutive years. The rate of change in telomere lengths differed with respect to year but not sex or age. The years when gulls showed stable telomere lengths or increases in telomere lengths (from 2009 to 2010) and decreases in telomere lengths (from 2010 to 2011) were characterized by El Niño and the Great Japan Earthquake, respectively. Both events are suspected to have had long-lasting effects on food availability and/or weather conditions. Thus, our findings that telomere dynamics in long-lived birds are influenced by dramatic changes in environmental conditions highlight the importance of environmental fluctuations in affecting stress and lifespan.


Assuntos
Charadriiformes/genética , Ecossistema , Telômero , Animais , Charadriiformes/fisiologia , Feminino , Japão , Longevidade/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...